Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94.

نویسندگان

  • P A Wearsch
  • L Voglino
  • C V Nicchitta
چکیده

GRP94, the endoplasmic reticulum Hsp90 paralog, binds a diverse array of peptides, a subset of which are suitable for assembly onto nascent MHC class I molecules. At present, the mechanism, site, and regulation of peptide binding to GRP94 are unknown. Using VSV8, the immunodominant peptide epitope of the vesicular stomatitis virus, and native, purified GRP94, we have investigated GRP94-peptide complex formation. The formation of stable GRP94-VSV8 complexes was slow; competition studies demonstrated that peptide binding to GRP94 was specific. VSV8 binding to GRP94 was stimulated 2-fold or 4-fold, respectively, following chemical denaturation/renaturation or transient heat shock. The activation of GRP94-peptide binding occurred coincident with a stable, tertiary conformational change, as identified by tryptophan fluorescence and proteolysis studies. Analysis of GRP94 secondary structure by circular dichroism spectroscopy indicated an identical alpha-helical content for the native, chemically denatured/renatured, and heat-shocked forms of GRP94. Through use of the environment-sensitive fluorophores acrylodan and Nile Red, it was observed that the activation of peptide binding was accompanied by enhanced peptide and solvent accessibility to a hydrophobic binding site(s). Peptide binding to native or activated GRP94 was identical in the presence or absence of ATP or ADP. These results are discussed with respect to a model in which peptide binding to GRP94 occurs within a hydrophobic binding pocket whose accessibility is conformationally regulated in an adenine nucleotide-independent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. II. Ligand-mediated activation of GRP94 molecular chaperone and peptide binding activity.

The N-terminal domain of eukaryotic Hsp90 proteins contains a conserved adenosine nucleotide binding pocket that also serves as the binding site for the Hsp90 inhibitors geldanamycin and radicicol. Although this domain is essential for Hsp90 function, the molecular basis for adenosine nucleotide-dependent regulation of GRP94, the endoplasmic reticulum paralog of Hsp90, remains to be established...

متن کامل

Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent.

GRP94, the endoplasmic reticulum paralog of hsp90, has recently been identified as a peptide and adenine nucleotide-binding protein. To determine if adenine nucleotides directly contribute to the regulation of GRP94 peptide binding activity, an in vitro peptide binding assay was developed. Using purified GRP94, we observed specific, saturable, temperature-sensitive binding of the peptide VSV8, ...

متن کامل

Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94.

The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are...

متن کامل

Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones.

GRP94, an essential endoplasmic reticulum chaperone, is required for the conformational maturation of proteins destined for cell-surface display or export. The extent to which GRP94 and its cytosolic paralog, Hsp90, share a common mechanism remains controversial. GRP94 has not been shown conclusively to hydrolyze ATP or bind cochaperones, and both activities, by contrast, result in conformation...

متن کامل

Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96.

The past year has born witness to compelling demonstrations of the utility of peptide complexes with glucose regulated protein 94 (GRP94, also known as gp96) in cancer immunotherapy. Insights into the structural basis of peptide binding to GRP94 have been obtained and the role of the transporter for antigen presentation in defining the GRP94-bound peptide composition has been determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 16  شماره 

صفحات  -

تاریخ انتشار 1998